Experimental Research of the Influence of Microfracture Morphology on Permeability of Shale Rock

Author:

Huang Xiaohe1ORCID,Long Yunqian1ORCID,Wang Yuyi1,Yue Ming2ORCID

Affiliation:

1. School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China

2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Hydraulic fracturing is currently one of the main technical methods of shale gas exploitation. The permeability variation of shale gas reservoir after fracturing is inevitable, while the influence of fracture length and fracture width on permeability and seepage characteristics of shale rock is a mystery. Besides, the stress sensitivity characteristics of shale rock, derived from different initial permeability, with the same permeability after fracturing are also ambiguous. To this end, a series of seepage characteristic experiments related to different fracture parameters are carried out with the black shale of the Longmaxi Formation in Sichuan gas field as the research target. The results show that the fracture length and fracture width have a good exponential relationship with the corresponding permeability of the reformed shale rock, and the contribution of the fracture width to shale permeability is much greater than that of the fracture length. In addition, the nonlinear seepage characteristics of shale rock are gradually significant with the reduction of fracture length and fracture width. Taking the primitive effective stress (10 MPa) as a critical point, the permeability of shale with large initial permeability decreased by 26.4%, which is about twice as much as that of shale rock with small initial permeability (14.9%) in the selected pressure loading stage, owing to the difference of fracture width inside the shale rock. The permeability of the shale rock with a large initial permeability is restored by 14.7%, while the shale rock with a small initial permeability is only recovered to 5.2% in the pressure unloading stage, which is attributed to the closure of fractures, especially the loss of fracture width. This research can provide some new insights for the production prediction of shale gas reservoir after fracturing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3