Numerical Simulation of Multiple Explosively Formed Projectile Warhead Forming Characteristics considering Various Materials

Author:

Ma Guangsong1ORCID,He Guanglin1ORCID,Liu Yukuan1ORCID,Zhang Yulong1

Affiliation:

1. Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 10081, China

Abstract

To study the influence of different liner structures and materials (copper, steel, and tungsten) on the forming characteristics of multiple explosively formed projectile (MEFP) with integrated liner and shell designs, three types of liners with different structures were designed. LS-DYNA was used for numerical simulation, and the results show that the thickness change at the center of the liner has no obvious influence on the shape of the explosively formed projectile (EFP). However, the curvature radius of the liner has a significant influence on the shape of the EFP. When the liner material is copper and the curvature radius of the liner is greater than 8 mm, the EFP shape approximates an ellipsoidal or hemispherical shape and the EFP forming speed is between 1900 m/s and 2400 m/s. When the material of the liner is steel or tungsten and the curvature radius of the liner is thicker than 8 mm, the liner is not able to form projectiles in the shape of a sphere, ellipsoid, or long rod. By comparing the forming speed from 1#EFP to 4#EFP, it can be said that MEFP with integrated liner and shell design displays a certain pressurization effect. Research results show that, for small-caliber MEFP warheads, subject to the size of the warhead, when the liner is steel or tungsten, the detonation energy generated by the limited charge does not result in the liner forming an effective EFP. However, when the liner material is selected as copper, the EFP forming shape and speed are more appropriate.

Funder

Science and Technology on Electromechanical Dynamic Control Laboratory

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference20 articles.

1. Effect of liner configuration parameters on formation of integral MEFP;C. X. Zhao;Chinese Journal of Energetic Materials,2016

2. Numerical simulation and experimental research on integral multiple explosively formed projectile warhead;C. X. Zhao;ACTA Armamentarii,2013

3. Superposition effect of shock waves formation of a grouped multiple explosives formed projectile;Y. Y. Zhang;Journal of Vibration and Shock,2012

4. Influence of initiation point position on formation of MEFP;L. W. Zang;Chinese Journal of Energetic Materials,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3