Affiliation:
1. Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
Abstract
Deep learning has brought about a phenomenal paradigm shift in digital steganography. However, there is as yet no consensus on the use of deep neural networks in reversible steganography, a class of steganographic methods that permits the distortion caused by message embedding to be removed. The underdevelopment of the field of reversible steganography with deep learning can be attributed to the perception that perfect reversal of steganographic distortion seems scarcely achievable, due to the lack of transparency and interpretability of neural networks. Rather than employing neural networks in the coding module of a reversible steganographic scheme, we instead apply them to an analytics module that exploits data redundancy to maximise steganographic capacity. State-of-the-art reversible steganographic schemes for digital images are based primarily on a histogram-shifting method in which the analytics module is often modelled as a pixel intensity predictor. In this paper, we propose to refine the prior estimation from a conventional linear predictor through a neural network model. The refinement can be to some extent viewed as a low-level vision task (e.g., noise reduction and super-resolution imaging). In this way, we explore a leading-edge neuroscience-inspired low-level vision model based on long short-term memory with a brief discussion of its biological plausibility. Experimental results demonstrated a significant boost contributed by the neural network model in terms of prediction accuracy and steganographic rate-distortion performance.
Subject
Computer Networks and Communications,Information Systems
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献