An Improved Adaptive Clone Genetic Algorithm for Task Allocation Optimization in ITWSNs

Author:

Zha Zhihua1,Li Chaoqun2ORCID,Xiao Jing2,Zhang Yao3,Qin Hu2,Liu Yang2,Zhou Jie2ORCID,Wu Jie1ORCID

Affiliation:

1. Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China

2. College of Information Science and Technology, Shihezi University, Shihezi 832000, China

3. University of the Cordilleras, Baguio City 2600, Philippines

Abstract

Research on intelligent transportation wireless sensor networks (ITWSNs) plays a very important role in an intelligent transportation system. ITWSNs deploy high-yield and low-energy-consumption traffic remote sensing sensor nodes with complex traffic parameter coordination on both sides of the road and use the self-organizing capabilities of each node to automatically establish the entire network. In the large-scale self-organization process, the importance of tasks undertaken by each node is different. It is not difficult to prove that the task allocation of traffic remote sensing sensors is an NP-hard problem, and an efficient task allocation strategy is necessary for the ITWSNs. This paper proposes an improved adaptive clone genetic algorithm (IACGA) to solve the problem of task allocation in ITWSNs. The algorithm uses a clonal expansion operator to speed up the convergence rate and uses an adaptive operator to improve the global search capability. To verify the performance of the IACGA for task allocation optimization in ITWSNs, the algorithm is compared with the elite genetic algorithm (EGA), the simulated annealing (SA), and the shuffled frog leaping algorithm (SFLA). The simulation results show that the execution performance of the IACGA is higher than EGA, SA, and SFLA. Moreover, the convergence speed of the IACGA is faster. In addition, the revenue of ITWSNs using IACGA is higher than those of EGA, SA, and SFLA. Therefore, the proposed algorithm can effectively improve the revenue of the entire ITWSN system.

Funder

Shihezi University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3