Affiliation:
1. College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
2. College of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China
Abstract
Error-Correcting Output Codes has become a well-known, established technique for multiclass classification due to its simplicity and efficiency. Each binary split contains different original classes. A noncompetent classifier emerges when it classifies an instance whose real class does not belong to the metasubclasses which is used to learn the classifier. How to reduce the error caused by the noncompetent classifiers under diversity big enough is urgent for ECOC classification. The weighted decoding strategy can be used to reduce the error caused by the noncompetence contradiction through relearning the weight coefficient matrix. To this end, a new weighted decoding strategy taking the classifier competence reliability into consideration is presented in this paper, which is suitable for any coding matrix. Support Vector Data Description is applied to compute the distance from an instance to the metasubclasses. The distance reflects the competence reliability and is fused as the weight in the base classifier combination. In so doing, the effect of the competent classifiers on classification is reinforced, while the bias induced by the noncompetent ones is decreased. Reflecting the competence reliability, the weights of classifiers for each instance change dynamically, which accords with the classification practice. The statistical simulations based on benchmark datasets indicate that our proposed algorithm outperforms other methods and provides new thought for solving the noncompetence problem.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献