The Supercritical Multithermal Fluid Flooding Investigation: Experiments and Numerical Simulation for Deep Offshore Heavy Oil Reservoirs

Author:

Tan Xianhong12,Zheng Wei12ORCID,Wang Taichao12,Zhu Guojin12,Sun Xiaofei13ORCID,Li Xiaoyu13ORCID

Affiliation:

1. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China

2. CNOOC Research Institute Ltd, Beijing 100028, China

3. China University of Petroleum (East China), School of Petroleum Engineering, Qingdao 266580, China

Abstract

The supercritical multithermal fluids (SCMTF) were developed for deep offshore heavy oil reservoirs. However, its EOR mechanisms are still unclear, and its numerical simulation method is deficient. In this study, a series of sandpack flooding experiments were first performed to investigate the viability of SCMTF flooding. Then, a novel numerical model for SCMTF flooding was developed based on the experimental results to characterize the flooding processes and to study the effects of injection parameters on oil recovery on a lab scale. Finally, the performance of SCMTF flooding in a practical deep offshore oil field was evaluated through simulation. The experiment results show that the SCMTF flooding gave the highest oil recovery of 80.89%, which was 29.60% higher than that of the steam flooding and 11.09% higher than that of SCW flooding. The history matching process illustrated that the average errors of 3.24% in oil recovery and of 4.33% in pressure difference confirm that the developed numerical model can precisely simulate the dynamic of SCMTF flooding. Increases in temperature, pressure, and the mole ratio of scN2 and scCO2 mixture to SCW benefit the heavy oil production. However, too much increase in temperature resulted in formation damage. In addition, an excess of scN2 and scCO2 contributed to an early SCMTF breakthrough. The field-scale simulation indicated that compared to steam flooding, the SCMTF flooding increased cumulative oil production by 27122 m3 due to higher reservoir temperature, expanded heating area, and lower oil viscosity, suggesting that the SCMTF flooding is feasible in enhancing offshore heavy oil recovery.

Funder

China National Offshore Oil Corporation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3