Molecular Characterization of MHC Class I Genes in Four Species of the Turdidae Family to Assess Genetic Diversity and Selection

Author:

Ghani Muhammad Usman1ORCID,Bo Li1ORCID,Buyang An2ORCID,Yanchun Xu1ORCID,Hussain Shakeel1,Yasir Muhammad3ORCID

Affiliation:

1. College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China

2. Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka 810-0000, Japan

3. Department of Life Science and Technology, Huazhong Agricultural University, Wuhan, China

Abstract

In vertebrate animals, the molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immunity. MHC class I deals with intracellular pathogens (virus) in birds. MHC class I diversity depends on the consequence of local and global environment selective pressure and gene flow. Here, we evaluated the MHC class I gene in four species of the Turdidae family from a broad geographical area of northeast China. We isolated 77 MHC class I sequences, including 47 putatively functional sequences and 30 pseudosequences from 80 individuals. Using the method based on analysis of cloned amplicons ( n = 25 ) for each species, we found two and seven MHC I sequences per individual indicating more than one MHC I locus identified in all sampled species. Results revealed an overall elevated genetic diversity at MHC class I, evidence of different selection patterns among the domains of PBR and non-PBR. Alleles are found to be divergent with overall polymorphic sites per species ranging between 58 and 70 (out of 291 sites). Moreover, transspecies alleles were evident due to convergent evolution or recent speciation for the genus. Phylogenetic relationships among MHC I show an intermingling of alleles clustering among the Turdidae family rather than between other passerines. Pronounced MHC I gene diversity is essential for the existence of species. Our study signifies a valuable tool for the characterization of evolutionary relevant difference across a population of birds with high conservational concerns.

Funder

Fundamental Research Funds for Central Universities

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3