Analysis and Design of the Battery Initial Energy Level with Task Scheduling for Energy-Harvesting Embedded Systems

Author:

Miao Xingyu1ORCID,Wei Jiayuan1ORCID,Ge Yongqi1ORCID

Affiliation:

1. School of Information Engineering, Ningxia University, Yinchuan 750021, China

Abstract

When the energy-harvesting embedded system (EHES) is running, its available energy (harvesting energy and battery storage energy) seems to be sufficient overall. However, in the process of EHES task execution, an energy shortage may occur in the busy period such that system tasks cannot be scheduled. We call this issue the energy deception (ED) of the EHES. Aiming to address the ED issue, we design an appropriate initial energy level of the battery. In this paper, we propose three algorithms to judge the feasibility of the task set and calculate the appropriate initial energy level of the battery. The holistic energy evaluation (HEE) algorithm makes a preliminary judgment of the task set feasibility according to available energy and consumption energy. A worst-case response time-based initial energy level of the battery (WCRT-IELB) algorithm and an accurate cycle-initial energy level of the battery (AC-IELB) algorithm can calculate the proper initial battery capacity. We use the YARTISS tool to simulate the above three algorithms. We conducted 250 experiments on As Late As Possible (ALAP) and As Soon As Possible (ASAP) scheduling with the maximum battery capacities of 50, 100, 200, 300, and 400. The experimental results show that setting a reasonable initial energy level of the battery can effectively improve the feasibility of the task set. Among the 250 task sets, the HEE algorithm filtered 2.8% of them as infeasible task sets. When the battery capacity is set to 400, the WCRT-BIEL algorithm increases the success rates of the ALAP and ASAP by 17.2% and 26.8%, respectively. The AC-BIEL algorithm increases the success rates of the ALAP and ASAP by 18% and 26.8%, respectively.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3