Cooperative Antenna Selection Method for Directional Antenna Ad Hoc Networks Based on ALOHA

Author:

Zheng Bowen1,Sun Songlin1ORCID,Shao Guoyuan2

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100000, China

2. North Automatic Control Technology Institute, Taiyuan 030006, China

Abstract

In recent years, directional antennas or phased array antennas are being widely used in communication systems due to the higher antenna gains. However, without external time synchronization and angle synchronization, the unsynchronized node usually takes a long time to synchronize with the existing nodes due to the narrow beams. Although the multibeam transmission or the digital phased array antenna can reduce this problem, it is clear that the cost of the digital phased array antenna is currently too high. Without external time synchronization and angle synchronization, a cooperative antenna selection method based on directional antennas is proposed in this paper. Our method only uses the narrow beams to transmit and to receive and reduces the time for self-synchronization. In this paper, we give the expression of the expected average time for the self-synchronization of multiple nodes, transform the problem into the problem of finding the minimum value of the infinite norm of the sequence, and then propose a cooperative antenna selection method which calculates the optimal transmission probability distribution of the node in different directions through parameter sharing and relative geometric position relationship between nodes. Finally, we verify the proposed method through simulation, and the number of beams is set between 6 and 10. In a typical scenario of five nodes, our method reduces the maximum average self-synchronization time by 50% averagely, compared with the traditional method which sends the different antenna beams at equal probability.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3