Node Value and Content Popularity-Based Caching Strategy for Massive VANETs

Author:

Gu Jinyuan12ORCID,Ji Yancheng1,Duan Wei1ORCID,Zhang Guoan1ORCID

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226000, China

2. Kangda College of Nanjing Medical University, Lianyungang, China

Abstract

The high-speed dynamic environment and massive information transmitted via wireless communications in the vehicular ad hoc networks (VANETs) pose a great challenge to privacy and security. To overcome this issue, use of the content-centric networking (CCN) provides a potential and practical solution. In-network caching is a main feature for future smart cities, in which the content is mainly placed in network nodes. Therefore, how to effectively select the cache locality and cache content is essential to improve the overall network performance, which is an inevitable trend. With these observations, this article proposes a caching strategy based on the node value and content popularity (NVCP) for the massive VANET scenario. In the proposed NVCP scheme, different from the traditional caching strategies, we evaluate the node value from three aspects: the connectivity, intermediary, and eigenvector centralities, synthetically, since the content with different types of popularity is placed in nodes with different values, resulting in the redundancy deterioration and diversity improvement for the content. The proposed caching strategy is evaluated by the stochastic network topology with multifactors, which provides different impacts on the system performance. Simulation results show that the NVCP outperforms the traditional cache strategies for 6G-CCN in terms of the cache hit ratio, average hop count, and transmission latency. Moreover, placing the content in the neighbor nodes is also introduced to further improve the utilization of the cache space and achieve better cache performance.

Funder

6th “521 High-Level Talents Training Project” in Lianyungang

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3