Computational Analysis of Fluid Flow through a Sine-Curved Channel with High Reynolds Number

Author:

Memon Abid A.1,Memon M. Asif1ORCID,Bhatti Kaleemullah1,Alotaibi Hammad2,Hamed Y.S.2ORCID,Shaikh Gul M.1,Khan Ilyas3ORCID

Affiliation:

1. Department of Mathematics, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan

2. Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

3. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, P.O. Box 66, Majmaah 11952, Saudi Arabia

Abstract

In this paper, we attend to investigate the steady flow of a Newtonian fluid through a sine-curved channel working with the least-square technique of Galerkin’s approach. We implement the whole simulation using Comsol Multiphysics 5.4. To study the fluid flow through this channel, we take the Reynolds numbers in the range from 1000 to 10,000 and amplitude of the sine-curved channel in the range from 10 cm to 30 cm. We examine the flow rate and pressure at the outlet. It is observed that, at the outlet, maximum speed is increasing linearly along the Reynolds number and that the maximum pressure settled a negative relationship with the Reynolds number when increased. It is also determined that due to an increase in the hydraulic jumps, when increasing the amplitude of vibration of the channel, the velocity of flow got fluctuated at the above walls, which also results in a decline in the pressure from the inlet to exit of the channel. Moreover, the several correlations keeping amplitude as constant have been developed for the maximum flow velocity magnitude at the exit of the channel relating to the Reynolds number. These correlations will be definitely used for the future production and comparison for the fluid flow for the curvy channel.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3