Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM

Author:

Hussain Sajid1,Afzal Hammad1ORCID,Saeed Ramsha1,Iltaf Naima1,Umair Mir Yasir1

Affiliation:

1. National University of Sciences and Technology (NUST), Islamabad, Pakistan

Abstract

Adverse drug reactions (ADRs) are the undesirable effects associated with the use of a drug due to some pharmacological action of the drug. During the last few years, social media has become a popular platform where people discuss their health problems and, therefore, has become a popular source to share information related to ADR in the natural language. This paper presents an end-to-end system for modelling ADR detection from the given text by fine-tuning BERT with a highly modular Framework for Adapting Representation Models (FARM). BERT overcame the predominant neural networks bringing remarkable performance gains. However, training BERT is a computationally expensive task which limits its usage for production environments and makes it difficult to determine the most important hyperparameters for the downstream task. Furthermore, developing an end-to-end ADR extraction system comprising two downstream tasks, i.e., text classification for filtering text containing ADRs and extracting ADR mentions from the classified text, is also challenging. The framework used in this work, FARM-BERT, provides support for multitask learning by combining multiple prediction heads which makes training of the end-to-end systems easier and computationally faster. In the proposed model, one prediction head is used for text classification and the other is used for ADR sequence labeling. Experiments are performed on Twitter, PubMed, TwiMed-Twitter, and TwiMed-PubMed datasets. The proposed model is compared with the baseline models and state-of-the-art techniques, and it is shown that it yields better results for the given task with the F -scores of 89.6%, 97.6%, 84.9%, and 95.9% on Twitter, PubMed, TwiMed-Twitter, and TwiMed-PubMed datasets, respectively. Moreover, training time and testing time of the proposed model are compared with BERT’s, and it is shown that the proposed model is computationally faster than BERT.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3