Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed

Author:

Chen Zhiming1,Luo Zhouhuai1ORCID,Wu Yunhua1,Xue Wei1,Li Wenxing1

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Three-axis air-bearing test bed is important semiphysical simulation equipment for spacecraft, which can simulate spacecraft attitude control, rendezvous, and docking with high confidence. When the three-axis air-bearing table is maneuvering at a large angle, if it is only controlled by the flywheel, it will cause the problems of slow maneuvering speed and high energy consumption, and when the external interference torque becomes large, the control accuracy will decline. A combined actuator including flywheel, air-conditioner thruster, and automatic balancing device is designed, and a hierarchical saturation PD control algorithm is proposed to improve the control accuracy and anti-interference ability of the three-axis air-bearing test bed. Finally, the mathematical simulation of the proposed control algorithm is carried out, and the physical verification is carried out on the three-axis air-bearing test bed. The results show that the control algorithm has higher control accuracy than the traditional control algorithm, and the control accuracy is better than 0.1 and basically meets the attitude control requirements of the ground simulation in-orbit satellite.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Reference30 articles.

1. Weaving China space TT and C network;Y. Shirui;Space Exploration,2020

2. Analysis of unbalanced moment caused by gravity gradient of three-axis air bearing test-bed;Y. W. Yanbing;Machine Tools and Hydraulics,2017

3. Automatic mass balancing of air-bearing-based three-Axis rotational spacecraft simulator;N. Brij;Journal of Guidance, Control, and Dynamics,2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3