Affiliation:
1. Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, 116044 LiaoNing Province, China
2. Inner Mongolia University for Nationalities, 028300 Tongliao, Inner Mongolia, China
Abstract
Diabetic retinopathy (DR) is a kind of severe retinal neurodegeneration. The advanced glycation end products (AGEs) affect autophagy, and mitochondrial function is involved in DR. Adenosine-activated protein kinase (AMPK) is an important metabolic sensor that can regulate energy homeostasis in cells. However, the effect of AMPK in DR is still not fully understood. In this study, we investigated the effect of AMPK on diabetes-induced photoreceptor cell degeneration. In vivo, a diabetic mouse model was established by streptozotocin (STZ) injection. Haematoxylin-eosin (HE) staining was used to observe retinal morphology and measure the thicknesses of different layers in the retina. Electroretinogram (ERG) was used to evaluate retinal function. In vitro, 661w cells were treated with AGEs with/without an AMPK agonist (metformin) or AMPK inhibitor (compound C). Flow cytometry and CCK-8 assays were used to analyse apoptosis. Mitochondrial membrane potential was analysed by JC-1. Western blotting and qRT-PCR were used to examine the expression of related proteins and genes, respectively. The wave amplitude and the thickness of the outer nuclear layer were decreased in diabetic mice. The expression of rhodopsin and opsin was also decreased in diabetic mice. In vitro, the percentage of apoptotic cells was increased, the expression of the apoptosis-related protein Bax was increased, and Bcl-2 was decreased after AGE treatment in 661w cells. The expression of the autophagy-related protein LC3 was decreased, and p62 was increased. The mitochondrial-related gene expression and membrane potential were decreased, and mitochondrial morphology was abnormal, as observed by TEM. However, AMPK stimulation ameliorated this effect. These results indicate that AMPK stimulation can delay diabetes-induced photoreceptor degeneration by regulating autophagy and mitochondrial function.
Funder
Liaoning Provincial Programme for Top Discipline in Basic Medical Sciences and the National and Local Joint Engineering Research Centre for Mongolian Medicine Research and Development
Subject
Cell Biology,Aging,General Medicine,Biochemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献