Pruning Multilayered ELM Using Cholesky Factorization and Givens Rotation Transformation

Author:

Liu Jingyi1,Liu Xinxin2,Liu Chongmin2,Le Ba Tuan3,Xiao Dong2ORCID

Affiliation:

1. College of Sciences, Northeastern University, Shenyang 110819, China

2. Information Science and Engineering School, Northeastern University, Shenyang 110819, China

3. Control, Automation in Production and Improvement of Technology Institute (CAPITI), Hanoi 100000, Vietnam

Abstract

Extreme learning machine is originally proposed for the learning of the single hidden layer feedforward neural network to overcome the challenges faced by the backpropagation (BP) learning algorithm and its variants. Recent studies show that ELM can be extended to the multilayered feedforward neural network in which the hidden node could be a subnetwork of nodes or a combination of other hidden nodes. Although the ELM algorithm with multiple hidden layers shows stronger nonlinear expression ability and stability in both theoretical and experimental results than the ELM algorithm with the single hidden layer, with the deepening of the network structure, the problem of parameter optimization is also highlighted, which usually requires more time for model selection and increases the computational complexity. This paper uses Cholesky factorization strategy and Givens rotation transformation to choose the hidden nodes of MELM and obtains the number of nodes more suitable for the network. First, the initial network has a large number of hidden nodes and then uses the idea of ridge regression to prune the nodes. Finally, a complete neural network can be obtained. Therefore, the ELM algorithm eliminates the need to manually set nodes and achieves complete automation. By using information from the previous generation’s connection weight matrix, it can be evitable to re-calculate the weight matrix in the network simplification process. As in the matrix factorization methods, the Cholesky factorization factor is calculated by Givens rotation transform to achieve the fast decreasing update of the current connection weight matrix, thus ensuring the numerical stability and high efficiency of the pruning process. Empirical studies on several commonly used classification benchmark problems and the real datasets collected from coal industry show that compared with the traditional ELM algorithm, the pruning multilayered ELM algorithm proposed in this paper can find the optimal number of hidden nodes automatically and has better generalization performance.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3