High-Speed Data-Driven Methodology for Real-Time Traffic Flow Predictions: Practical Applications of ITS

Author:

Chang Hyun-ho1,Yoon Byoung-jo2ORCID

Affiliation:

1. School of Environmental Studies, Seoul National University, Seoul, Republic of Korea

2. Department of Urban Engineering, Incheon National University, Incheon, Republic of Korea

Abstract

Despite the achievements of academic research on data-driven k-nearest neighbour nonparametric regression (KNN-NPR), the low-speed computational capability of the KNN-NPR method, which can occur during searches involving enormous amounts of historical data, remains a major obstacle to improvements of real-system applications. To overcome this critical issue successfully, a high-speed KNN-NPR framework, capable of generating short-term traffic volume predictions, is proposed in this study. The proposed method is based on a two-step search algorithm, which has the two roles of building promising candidates for input data during nonprediction times and identifying decision-making input data for instantaneous predictions at the prediction point. To prove the efficacy of the proposed model, an experimental test was conducted with large-size traffic volume data. It was found that the performance of the model not only at least equals that of linear-search-based KNN-NPR in terms of prediction accuracy, but also shows a substantially reduced execution time in approximating real-time applications. This result suggests that the proposed algorithm can be also effectively employed as a preprocess to select useful past cases for advanced learning-based forecasting models.

Funder

Incheon National University

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3