Affiliation:
1. Information and Educational Technology Center, Southwest Minzu University, Chengdu 610041, China
2. School of Intelligent Technology, Geely University of China, Chengdu 641423, China
Abstract
Industry 4.0 affects all components of the modern industry value chain. The accelerating use of the Internet and the convergence of industrial and operational networks constantly increase the need for secure industrial communication solutions. Therefore, “multilevel industrial cyber protection” is critical to Industry 4.0. In general, industrial protection refers to safeguarding information and data and the intellectual property rights of production processes related to the overall industry environment. The availability, integrity, and confidentiality of systems must be maintained. The goal challenge is the best possible protection from attacks and threats which create immediate financial damage and other risks in the industry (reputation, etc.). Based on the Defense-in-Depth strategy, a holistic, multilayered, and in-depth protection of industrial systems is developed in this paper. Specifically, a Semi-Self-Supervised Intrusion Detection System (S3IDS) is proposed, which combines advanced machine learning techniques for industrial data noise reduction to automate the discovery and separation of classes, which are essentially equivalent to cyber-related anomalies. As demonstrated by a mathematical simulation based on computational number theory and specifically on the concept of the single object, the proposed S3IDS learns to accurately reconstruct samples to predict the nature of an anomaly created directly by the industrial ecosystem.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献