Rigorous Coupled-Wave Analysis of Surface Plasmon Enhancement from Patterned Immobilization on Nanogratings

Author:

Hoa Xuyen D.1,Tabrizian Maryam1,Kirk Andrew G.2

Affiliation:

1. Department of Biomedical Engineering, McGill University, Montreal QC, Canada H3A 2B4

2. Department of Electrical and Computer Engineering, McGill University, Montreal QC, Canada H3A 2A7

Abstract

We numerically evaluate the optical response of a Kretschmann surface plasmon resonance (SPR) biosensor featuring metallic nanogratings and patterned immobilization of surface receptors. Parameters are chosen such that the biosensor is operated near the generated bandgap of the surface plasmon dispersion. In this paper, we demonstrate that the sensitivity can be increased by concentrating the surface receptors and adsorbed analytes on regions where the field intensity is the greatest. Specifically, a surface presenting receptors on the grating mesas is shown to be twice as sensitive as that of a uniformly functionalized corrugated surface. The grating geometries are also studied; it is found that higher aspect ratio features show increased SPR response. The analysis differs from existing studies of enhanced SPR as the sensitivity improvement originating from the concentration and mapping of surface receptors to the plasmon field distribution is studied rather than the absorption or scattering enhancement effect of the nanostructures.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3