A New Fault Diagnosis Method of Rotating Machinery

Author:

Chen Chih-Hao1,Shyu Rong-Juin1,Ma Chih-Kao2

Affiliation:

1. Department of System Engineering and Naval Architecture, National Taiwan Ocean University, Keeling, Taiwan

2. Graduate school of Gerontic Technology and Service Management, Nan Kai Institute of Technology, Tianjin, Taiwan

Abstract

This paper presents a new fault diagnosis procedure for rotating machinery using the wavelet packets-fractal technology and a radial basis function neural network. The faults of rotating machinery considered in this study include imbalance, misalignment, looseness and imbalance combined with misalignment conditions. When such faults occur, they usually induce non-stationary vibrations to the machine. After measuring the vibration signals, the wavelet packets transform is applied to these signals. The fractal dimension of each frequency bands is extracted and the box counting dimension is used to depict the failure characteristics of the vibration signals. The failure modes are then classified by a radial basis function neural network. An experimental study was performed to evaluate the proposed method and the results show that the method can effectively detect and recognize different kinds of faults of rotating machinery.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3