HCCI Intelligent Rapid Modeling by Artificial Neural Network and Genetic Algorithm

Author:

Validi AbdoulAhad1,Chen Jyh-Yuan2,Ghafourian Akbar3

Affiliation:

1. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427, USA

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA

3. Department of Aerospace Engineering, Sharif University of Technology, Tehran 8639-11365, Iran

Abstract

A Dynamic model of Homogeneous Charge Compression Ignition (HCCI), based on chemical kinetics principles and artificial intelligence, is developed. The model can rapidly predict the combustion probability, thermochemistry properties, and exact timing of the Start of Combustion (SOC). A realization function is developed on the basis of the Sandia National Laboratory chemical kinetics model, and GRI3.0 methane chemical mechanism. The inlet conditions are optimized by Genetic Algorithm (GA), so that combustion initiates and SOC timing posits in the desired crank angle. The best SOC timing to achieve higher performance and efficiency in HCCI engines is between 5 and 15 degrees crank angle (CAD) after top dead center (TDC). To achieve this SOC timing, in the first case, the inlet temperature and equivalence ratio are optimized simultaneously and in the second case, compression ratio is optimized by GA. The model’s results are validated with previous works. The SOC timing can be predicted in less than 0.01 second and the CPU time savings are encouraging. This model can successfully be used for real engine control applications.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3