Computationally Efficient Assessments of the Effects of Radiative Transfer, Turbulence Radiation Interactions, and Finite Rate Chemistry in the Mach 20 Reentry F Flight Vehicle

Author:

Krishnamoorthy Gautham1,Clarke Lauren Elizabeth1

Affiliation:

1. Department of Chemical Engineering, University of North Dakota, P.O. Box 7101, Harrington Hall Room 323, 241 Centennial Drive, Grand Forks, ND 58202-7101, USA

Abstract

Effects of finite rate chemistry, radiative heat transfer, and turbulence radiation interactions (TRI) are assessed in a fully coupled manner in simulations of the Mach 20 Reentry F flight vehicle. Add-on functions were employed to compute a Planck mean absorption coefficient and the temperature self-correlation term (for TRI effects) in the optically thin shock layer. Transition onset was induced by specifying a wall roughness height at the experimentally observed transition location. The chemistry was modeled employing eight elementary reactions and an equilibrium approach allowing species to relax towards their chemical equilibrium values over the process characteristic time scale. The wall heat fluxes in the turbulent region, density, and velocity profiles compared reasonably well against measurements as well as similar calculations reported previously. The density predictions were more sensitive to the choice of modeling options than the velocities. The radiative source term magnitude agreed closely with its measurements deduced from shock tube experiments. The TRI model predicted a 60% enhancement in emission due to temperature fluctuations in the turbulent boundary layer. While the variations in density and velocity predictions among the models diminished along the length of the body, the O and NO prediction variations extended well into the turbulent boundary layer.

Funder

North Dakota Space Grant Fellowship

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3