Affiliation:
1. Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
Abstract
In an effort to understand the vibration-induced injuries incurred by manual workers, mechanical models are developed and used to predict the biodynamic responses of human body parts that are exposed to vibration. Researchers have traditionally focused on the arms and hands, but there has been only limited research on finger modeling. To simulate the accurate response of a single finger, a detailed mechanical model based on biodynamic finger measurements is necessary. However, the development of such models may prove difficult using the traditional one-point coupling method; therefore, this study proposes a new approach. A novel device for single-finger measurements is presented and used to expose the finger to a single-axial broadband excitation. The sequentially measured responses of the different finger parts are then used to identify the parameters of a multibody mechanical model of the index finger. Very good agreement between the measured and the simulated data was achieved, and the study also confirmed that the obtained index-finger model is acceptable for further biodynamic studies.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献