Dynamic Analysis of a 5-DOF Flexure-Based Nanopositioning Stage

Author:

Shen Yiping1ORCID,Luo Xin2ORCID,Wang Songlai1,Li Xuejun1

Affiliation:

1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Abstract

A multibody dynamic model is developed for dynamic analysis of a 5-DOF flexure-based nanopositioning stage in the projection optical system of the semiconductor lithography in this paper. The 5-DOF stage is considered as an assembly of rigid bodies interconnected by elastic flexure hinges. Considering the length effects of flexure hinges, multibody dynamic equations are established according to spatial motions of rigid bodies by using Lagrangian method. The shear effects and the torsional compliances of the commonly used circular flexure hinges are considered to enhance the modeling accuracy. The accuracies of various out-of-plane compliance formulas are also discussed. To verify the developed dynamic model, the finite element analyses (FEA) by using ANSYS and modal hammer experimental tests of the primary flexure-based composition structures and the integral 5-DOF stage are performed. The analytical modal frequencies are well in agreement with FEA and experimental test. The results are significant to analyze and optimize the 5-DOF flexure-based nanopositioning stage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3