Discovering Travel Community for POI Recommendation on Location-Based Social Networks

Author:

Tang Lei1ORCID,Cai Dandan1ORCID,Duan Zongtao1ORCID,Ma Junchi1,Han Meng1,Wang Hanbo1

Affiliation:

1. School of information engineering, Chang’an University, Xi’an, Shanxi, 710064, China

Abstract

Point-of-interest (POI) recommendations are a popular form of personalized service in which users share their POI location and related content with their contacts in location-based social networks (LBSNs). The similarity and relatedness between users of the same POI type are frequently used for trajectory retrieval, but most of the existing works rely on the explicit characteristics from all users’ check-in records without considering individual activities. We propose a POI recommendation method that attempts to optimally recommend POI types to serve multiple users. The proposed method aims to predict destination POIs of a user and search for similar users of the same regions of interest, thus optimizing the user acceptance rate for each recommendation. The proposed method also employs the variable-order Markov model to determine the distribution of a user’s POIs based on his or her travel histories in LBSNs. To further enhance the user’s experience, we also apply linear discriminant analysis to cluster the topics related to “Travel” and connect to users with social links or similar interests. The probability of POIs based on users’ historical trip data and interests in the same topics can be calculated. The system then provides a list of the recommended destination POIs ranked by their probabilities. We demonstrate that our work outperforms collaborative-filtering-based and other methods using two real-world datasets from New York City. Experimental results show that the proposed method is better than other models in terms of both accuracy and recall. The proposed POI recommendation algorithms can be deployed in certain online transportation systems and can serve over 100,000 users.

Funder

NFSC

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3