Characterization of Nonstationary Mode Interaction of Bridge by Considering Deterioration of Bearing

Author:

Chen Gang S.1ORCID,Xiao Feng2ORCID,Zatar Wael1,Hulsey J. Leroy3

Affiliation:

1. College of Information Technology and Engineering, Marshall University, Huntington, WV, USA

2. Department of Civil Engineering, Nanjing University of Science and Technology, Nanjing, China

3. Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA

Abstract

As all bridges get deteriorated over time, structural health monitoring of these structures has become very important for the damage identification and maintenance work. Evaluating a bridge’s health condition requires the testing of a variety of physical quantities including bridge dynamic responses and the evaluation of the functions of varied bridge subsystems. In this study, both the acceleration of the deck and the dynamic rotational angle of the bearings in a long-span steel girder bridge were measured when the bridge system was excited by passing-by vehicles. The nonstationary dynamical phenomena including vibration mode interactions and coupling are observed in response spectrogram. To elaborate the phenomena, the linear vibration mode properties of the bridge are characterized by finite element analysis and are correlated with the specific modes in test. A theoretical model is presented showing the mechanism of the mode coupling and instability originated from the friction effects in bearing. This study offers some insights into the correlation between complex bridge vibrations and the bearing effects, which lays a foundation for the in situ health monitoring of bridge bearing by using dynamical testing.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3