Study on the Interaction of Collinear Cracks and Wing Cracks and Cracking Behavior of Rock under Uniaxial Compression

Author:

Wang Chaolin12,Zhao Yu13ORCID,Zhao Yanlin4ORCID,Wan Wen4

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Key Laboratory of Geotechnical Engineering Stability Control and Health Monitoring of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

3. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400030, China

4. School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

Abstract

This paper investigates the crack interaction, initiation, and propagation rules of rock-like materials containing two collinear cracks. Based on the Kachanov method, the formulations for stress intensity factors (SIFs) of two collinear cracks and two winged cracks are derived, respectively. The influences of bridge ligament and crack length on the crack interaction are analyzed theoretically. The results show that the propagation of a long crack is independent of crack interaction when da2 and the same rule applies for a short crack when da1. With the growth of wing cracks, the SIF of wings first remarkably decreases and then it tends toward a steady value. Subsequently, the propagation of collinear cracks and cracking processes under uniaxial compression are analyzed experimentally and numerically. Both the experimental results and simulation results demonstrate that shear cracks tend to initiate and propagate at higher inclination angle. The crack coalescence is affected by the inclination angle of bridge ligament. For increasing the inclination angle, the crack coalescence varies from wing crack failure to shear crack coalescence. As bridge ligament increases, the crack coalescence varies from shear crack coalescence to shear-wing crack coalescence and then to wing crack failure.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3