Affiliation:
1. Departamento de Tecnología Electrónica, Universidad de Málaga, ETSI Telecomunicación, 29071 Málaga, Spain
Abstract
Due to the serious impact of falls on the autonomy and health of older people, the investigation of wearable alerting systems for the automatic detection of falls has gained considerable scientific interest in the field of body telemonitoring with wireless sensors. Because of the difficulties of systematically validating these systems in a real application scenario, Fall Detection Systems (FDSs) are typically evaluated by studying their response to datasets containing inertial sensor measurements captured during the execution of labelled nonfall and fall movements. In this context, during the last decade, numerous publicly accessible databases have been released aiming at offering a common benchmarking tool for the validation of the new proposals on FDSs. This work offers a comparative and updated analysis of these existing repositories. For this purpose, the samples contained in the datasets are characterized by different statistics that model diverse aspects of the mobility of the human body in the time interval where the greatest change in the acceleration module is identified. By using one-way analysis of variance (ANOVA) on the series of these features, the comparison shows the significant differences detected between the datasets, even when comparing activities that require a similar degree of physical effort. This heterogeneity, which may result from the great variability of the sensors, experimental users, and testbeds employed to generate the datasets, is relevant because it casts doubt on the validity of the conclusions of many studies on FDSs, since most of the proposals in the literature are only evaluated using a single database.
Funder
European Regional Development Fund
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献