On the Heterogeneity of Existing Repositories of Movements Intended for the Evaluation of Fall Detection Systems

Author:

Casilari Eduardo1ORCID,Santoyo-Ramón José A.1ORCID,Cano-García José M.1ORCID

Affiliation:

1. Departamento de Tecnología Electrónica, Universidad de Málaga, ETSI Telecomunicación, 29071 Málaga, Spain

Abstract

Due to the serious impact of falls on the autonomy and health of older people, the investigation of wearable alerting systems for the automatic detection of falls has gained considerable scientific interest in the field of body telemonitoring with wireless sensors. Because of the difficulties of systematically validating these systems in a real application scenario, Fall Detection Systems (FDSs) are typically evaluated by studying their response to datasets containing inertial sensor measurements captured during the execution of labelled nonfall and fall movements. In this context, during the last decade, numerous publicly accessible databases have been released aiming at offering a common benchmarking tool for the validation of the new proposals on FDSs. This work offers a comparative and updated analysis of these existing repositories. For this purpose, the samples contained in the datasets are characterized by different statistics that model diverse aspects of the mobility of the human body in the time interval where the greatest change in the acceleration module is identified. By using one-way analysis of variance (ANOVA) on the series of these features, the comparison shows the significant differences detected between the datasets, even when comparing activities that require a similar degree of physical effort. This heterogeneity, which may result from the great variability of the sensors, experimental users, and testbeds employed to generate the datasets, is relevant because it casts doubt on the validity of the conclusions of many studies on FDSs, since most of the proposals in the literature are only evaluated using a single database.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3