Improved Newton Iterative Algorithm for Fractal Art Graphic Design

Author:

Chen Huijuan1,Zheng Xintao1ORCID

Affiliation:

1. Academy of Arts, Hebei GEO University, Shijiazhuang 050031, Hebei, China

Abstract

Fractal art graphics are the product of the fusion of mathematics and art, relying on the computing power of a computer to iteratively calculate mathematical formulas and present the results in a graphical rendering. The selection of the initial value of the first iteration has a greater impact on the final calculation result. If the initial value of the iteration is not selected properly, the iteration will not converge or will converge to the wrong result, which will affect the accuracy of the fractal art graphic design. Aiming at this problem, this paper proposes an improved optimization method for selecting the initial value of the Gauss-Newton iteration method. Through the area division method of the system composed of the sensor array, the effective initial value of iterative calculation is selected in the corresponding area for subsequent iterative calculation. Using the special skeleton structure of Newton’s iterative graphics, such as infinitely finely inlaid chain-like, scattered-point-like composition, combined with the use of graphic secondary design methods, we conduct fractal art graphics design research with special texture effects. On this basis, the Newton iterative graphics are processed by dithering and MATLAB-based mathematical morphology to obtain graphics and then processed with the help of weaving CAD to directly form fractal art graphics with special texture effects. Design experiments with the help of electronic Jacquard machines proved that it is feasible to transform special texture effects based on Newton's iterative graphic design into Jacquard fractal art graphics.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3