Affiliation:
1. Elevate, 4150 International Plaza, Fort Worth, TX 76109, USA
Abstract
There are various definitions of mutual information. Essentially, these definitions can be divided into two classes: (1) definitions with random variables and (2) definitions with ensembles. However, there are some mathematical flaws in these definitions. For instance, Class 1 definitions either neglect the probability spaces or assume the two random variables have the same probability space. Class 2 definitions redefine marginal probabilities from the joint probabilities. In fact, the marginal probabilities are given from the ensembles and should not be redefined from the joint probabilities. Both Class 1 and Class 2 definitions assume a joint distribution exists. Yet, they all ignore an important fact that the joint or the joint probability measure is not unique. In this paper, we first present a new unified definition of mutual information to cover all the various definitions and to fix their mathematical flaws. Our idea is to define the joint distribution of two random variables by taking the marginal probabilities into consideration. Next, we establish some properties of the newly defined mutual information. We then propose a method to calculate mutual information in machine learning. Finally, we apply our newly defined mutual information to credit scoring.
Subject
General Engineering,General Mathematics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献