One-Time Roll-Forming Technology for High-Strength Steel Profiles with “日” Section

Author:

Liang Jicai12,Chen Chuandong13,Liang Ce13ORCID,Li Yi13ORCID,Chen Guangyi4ORCID,Li Xiaoming13ORCID,Wang Aicheng12ORCID

Affiliation:

1. Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Changchun 130025, Jilin, China

2. Roll Forging Institute, Jilin University, Changchun 130025, Jilin, China

3. College of Materials Science and Engineering, Jilin University, Changchun 130025, Jilin, China

4. School of Automotive Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

Abstract

Roll forming is an important processing method for the production of commercial vehicle anticollision beams, and edge buckling is one of the common defects in roll-forming process. In this paper, the “日” shape section of roll forming is studied, and first the b-shaped section is formed by roll forming, and the internal weld line is automatically welded while forming; then the long side of the b-shaped section is bent into the “U” shape, and the external weld line is welded while forming. The profile is cut off and then bent at both ends to form a commercial vehicle anticollision beam. The ABAQUS finite element software is used to model and analyze the factors affecting the “edge buckling” defect of roll-formed products. This paper uses three factors and three levels of orthogonal simulation experiments to study the problem. The results show that the effect of the factors of flange height, sheet thickness, and forming speed on the formation of edge buckling is in the order of sheet thickness > flange height > forming speed. The edge buckling size of the vertical edge of b-shaped tube decreases with the increase of sheet thickness and increases with the increase of flange height.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3