Design and Dynamic Modelling of a Hybrid Power System for a House in Nigeria

Author:

Aghenta Lawrence O.1ORCID,Iqbal M. Tariq1ORCID

Affiliation:

1. Electrical and Computer Engineering Department, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, Canada

Abstract

This paper presents the design and dynamic modelling of a hybrid power system for a house in Nigeria. Thermal modelling of the house under consideration is carried out using BEopt software to accurately study the heat loss through the walls, windows, doors, and roof of the house. The analysis of this thermal model is used to determine hourly load data. Design of an optimum hybrid power system for the house is done with HOMER Pro software. The hybrid power system is made up of a diesel generator and a stand-alone PV system. The proposed PV system consists of PV arrays, DC–DC boost converter, MPPT controller, single-phase full-bridge inverter, inverter voltage mode controller (PI controller), and single-phase step-up transformer. Dynamic simulation of the proposed PV system component of the hybrid power system is carried out in MATLAB/Simulink environment to study the power quality, harmonics, load impact, voltage transients, etc. of the system, and the simulation results are presented in the paper.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3