Integrating “Hard” and “Soft” Infrastructural Resilience Assessment for Water Distribution Systems

Author:

Pagano Alessandro1ORCID,Pluchinotta Irene2,Giordano Raffaele1,Fratino Umberto3

Affiliation:

1. Water Research Institute-National Research Council (IRSA-CNR), viale F. de Blasio 5, 70132 Bari, Italy

2. LAMSADE-CNRS, Paris Dauphine University, PSL University, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

3. DICATECh, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy

Abstract

Cities are highly dynamic systems, whose resilience is affected by the interconnectedness between “hard” and “soft” infrastructures. “Hard infrastructures” are the functional networks with physical elements providing goods or services. “Soft infrastructures” (culture, governance, and social patterns) encompass the social networks, make the hard infrastructures work, and are vital for understanding the consequences of disasters and the effectiveness of emergency management. Although the dynamic interactions between such infrastructures are highly complex in the case of the occurrence of hazardous events, it is fundamental to analyze them. The reliability of hard infrastructures during emergency management contributes to keep alive the social capital, while the community, its networks, and its own resilience influence the service provided by infrastructural systems. Resilience-thinking frameworks overcome the limits of the traditional engineering-oriented approaches, accounting for complexity of socio-technical-organizational networks, bridging the static and dynamic components of disasters across pre- and postevent contexts. The present work develops an integrated approach to operatively assess resilience for the hard and soft infrastructural systems, aiming at modeling the complexity of their interaction by adopting a graph theory-based approach and social network analysis. The developed approach has been experimentally implemented for assessing the integrated resilience of the hard/soft infrastructures during the L’Aquila 2009 earthquake.

Funder

EDUCEN

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3