Carbon Nanotube Fiber Pretreatments for Electrodeposition of Copper

Author:

Hannula Pyry-Mikko1ORCID,Junnila Minttu1,Janas Dawid2,Aromaa Jari1ORCID,Forsén Olof1ORCID,Lundström Mari1ORCID

Affiliation:

1. Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Vuorimiehentie 2, 02150 Espoo, Finland

2. Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland

Abstract

There is increasing interest towards developing carbon nanotube-copper (CNT-Cu) composites due to potentially improved properties. Carbon nanotube macroscopic materials typically exhibit high resistivity, low electrochemical reactivity, and the presence of impurities, which impede its use as a substrate for electrochemical deposition of metals. In this research, different CNT fiber pretreatment methods, such as heat treatment, immersion in Watts bath, anodization, and exposure to boric acid (H3BO3), were investigated to improve the electrochemical response for copper deposition. It was shown that these treatments affect the surface activity of CNTs, including electrical resistivity, polarization resistance, and active surface area, which influence the electrodeposition process of copper. Properties of CNT structures and CNT-Cu composites were researched by electrochemical impedance spectroscopy (EIS), galvanostatic copper deposition, scanning electron microscope (SEM), and four-point electrical resistance measurements. Heat treatment, Watts bath, anodization, and boric acid treatments were shown to be effective for modifying the CNT surface reactivity for subsequent electrochemical deposition of copper.

Funder

FP7

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3