Feature Representation Using Deep Autoencoder for Lung Nodule Image Classification

Author:

Mao Keming1ORCID,Tang Renjie2,Wang Xinqi1,Zhang Weiyi1,Wu Haoxiang1

Affiliation:

1. College of Software, Northeastern University, Shenyang, Liaoning Province 110004, China

2. China Mobile Group Zhejiang Co., Ltd., Hanzhou, Zhejiang Province 310016, China

Abstract

This paper focuses on the problem of lung nodule image classification, which plays a key role in lung cancer early diagnosis. In this work, we propose a novel model for lung nodule image feature representation that incorporates both local and global characters. First, lung nodule images are divided into local patches with Superpixel. Then these patches are transformed into fixed-length local feature vectors using unsupervised deep autoencoder (DAE). The visual vocabulary is constructed based on the local features and bag of visual words (BOVW) is used to describe the global feature representation of lung nodule image. Finally, softmax algorithm is employed for lung nodule type classification, which can assemble the whole training process as an end-to-end mode. Comprehensive evaluations are conducted on the widely used public available ELCAP lung image database. Experimental results with regard to different parameter setting, data augmentation, model sparsity, classifier algorithms, and model ensemble validate the effectiveness of our proposed approach.

Funder

Liaoning Doctoral Research Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved lung cancer diagnosis using modified M3D-RUN model with fuzzy active contour segmentation and LDHA mean filtering technique;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-07-26

2. Lung Cancer Classification Using Deep Learning Hybrid Model;Advances in Medical Technologies and Clinical Practice;2024-05-31

3. A systematic review on deep learning‐based automated cancer diagnosis models;Journal of Cellular and Molecular Medicine;2024-03

4. A Novel Technique for Brain Tumor Detection and Classification using T1-Weighted MR Image;International Journal of Online and Biomedical Engineering (iJOE);2023-12-15

5. Classification of non-small cell lung cancers using deep convolutional neural networks;Multimedia Tools and Applications;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3