Affiliation:
1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract
This paper established a delayed vector-borne disease model with saturated infection rate and cure rate. First of all, according to the basic reproductive number R0, we determined the disease-free equilibrium E0 and the endemic equilibrium E1. Through the analysis of the characteristic equation, we consider the stability of two equilibriums. Furthermore, the effect on the stability of the endemic equilibrium E1 by delay was studied, the existence of Hopf bifurcations of this system in E1 was analyzed, and the length of delay to preserve stability was estimated. The direction and stability of the Hopf bifurcation were also been determined. Finally, we performed some numerical simulation to illustrate our main results.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献