An Ensemble Semantic Textual Similarity Measure Based on Multiple Evidences for Biomedical Documents

Author:

Li Meijing1ORCID,Zhou Xianhe1ORCID,Ryu Keun Ho23ORCID,Theera-Umpon Nipon34ORCID

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh 700000, Vietnam

3. Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand

4. Electrical Engineering Department, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

With the increasing volume of the published biomedical literature, the fast and effective retrieval of the literature on the sequence, structure, and function of biological entities is an essential task for the rapid development of biology and medicine. To capture the semantic information in biomedical literature more effectively when biomedical documents are clustered, we propose a new multi-evidence-based semantic text similarity calculation method. Two semantic similarities and one content similarity are used, in which two semantic similarities include MeSH-based semantic similarity and word embedding-based semantic similarity. To fuse three different similarities more effectively, after, respectively, calculating two semantic and one content similarities between biomedical documents, feedforward neural network is applied to integrate the two semantic similarities. Finally, weighted linear combination method is used to integrate the semantic and content similarities. To evaluate the effectiveness, the proposed method is compared with the existing basic methods, and the proposed method outperforms the existing related methods. Based on the proven results of this study, this method can be used not only in actual biological or medical experiments such as protein sequence or function analysis but also in biological and medical research fields, which will help to provide, use, and understand thematically consistent documents.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3