Detection of COVID-19 Case from Chest CT Images Using Deformable Deep Convolutional Neural Network

Author:

Foysal Md.1ORCID,Hossain A. B. M. Aowlad1ORCID,Yassine Abdulsalam2ORCID,Hossain M. Shamim3ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

2. Department of Software Engineering, Lakehead University, Thunder Bay, ON, Canada

3. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

The infectious coronavirus disease (COVID-19) has become a great threat to global human health. Timely and rapid detection of COVID-19 cases is very crucial to control its spreading through isolation measures as well as for proper treatment. Though the real-time reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used technique for COVID-19 infection, recent researches suggest chest computed tomography (CT)-based screening as an effective substitute in cases of time and availability limitations of RT-PCR. In consequence, deep learning-based COVID-19 detection from chest CT images is gaining momentum. Furthermore, visual analysis of data has enhanced the opportunities of maximizing the prediction performance in this big data and deep learning realm. In this article, we have proposed two separate deformable deep networks converting from the conventional convolutional neural network (CNN) and the state-of-the-art ResNet-50, to detect COVID-19 cases from chest CT images. The impact of the deformable concept has been observed through performance comparative analysis among the designed deformable and normal models, and it is found that the deformable models show better prediction results than their normal form. Furthermore, the proposed deformable ResNet-50 model shows better performance than the proposed deformable CNN model. The gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions’ localization effort at the final convolutional layer and has been found excellent. Total 2481 chest CT images have been used to evaluate the performance of the proposed models with a train-valid-test data splitting ratio of 80 : 10 : 10 in random fashion. The proposed deformable ResNet-50 model achieved training accuracy of 99.5% and test accuracy of 97.6% with specificity of 98.5% and sensitivity of 96.5% which are satisfactory compared with related works. The comprehensive discussion demonstrates that the proposed deformable ResNet-50 model-based COVID-19 detection technique can be useful for clinical applications.

Funder

Khulna University of Engineering & Technology

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3