Ship Target Detection Algorithm Based on Improved YOLOv3 for Maritime Image

Author:

Chen Dehai1ORCID,Sun Shiru1ORCID,Lei Zhijun1ORCID,Shao Heng1ORCID,Wang Yuzhao1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

Accurate identification of ships is the key technology of intelligent transportation in water. At the same time, it also provides a judgment basis for water traffic safety control. This paper proposed a detection method of ships in water based on improved You Only Look Once version 3 (YOLOv3), which is called Feature Attention, Feature Enhancement YOLOv3 (AE-YOLOv3). The feature attention module was constructed by introducing the attention mechanism, which was embedded in Darknet-53 for feature recalibration, which improved the feature extraction ability of the model in the complex navigable background. For the problem of insufficient semantic information of low-level features in the feature fusion process, a feature enhancement module was constructed and applied to the feature fusion part to enhance the receptive field size of the corresponding feature layer and the correlation degree of feature extraction network. Experiments were carried out on the public SeaShips dataset. Experiments show that the detection accuracy is as high as 98.72%, which is better than that of other mainstream ship identification models, fully verifying the superiority of this method in the detection of waterborne traffic ships.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3