Effects of REDOX in Regulating and Treatment of Metabolic and Inflammatory Cardiovascular Diseases

Author:

Wang Kai1,Dong Yanhan1ORCID,Liu Jing1,Qian Lili1,Wang Tao1,Gao Xiangqian1,Wang Kun1,Zhou Luyu1ORCID

Affiliation:

1. Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China

Abstract

Reduction oxidation (REDOX) reaction is crucial in life activities, and its dynamic balance is regulated by ROS. Reactive oxygen species (ROS) is associated with a variety of metabolic diseases involving in multiple cellular signalling in pathologic and physiological signal transduction. ROS are the by-products of numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria, and peroxisome. ROS signalling is not only involved in normal physiological processes but also causes metabolic dysfunction and maladaptive responses to inflammatory signals, which depends on the cell type or tissue environment. Excess oxidants are able to alter the normal structure and function of DNA, lipids, and proteins, leading to mutations or oxidative damage. Therefore, excessive oxidative stress is usually regarded as the cause of various pathological conditions, such as cancer, neurodegeneration, cardiovascular diseases (CVDs), diabetes, and kidney diseases. Currently, it has been possible to detect diabetes and other cardiac diseases by detecting derivatives accompanied by oxidative stress in vivo as biomarkers, but there is no effective method to treat these diseases. In consequence, it is essential for us to seek new therapy targeting these diseases through understanding the role of ROS signalling in regulating metabolic activity, inflammatory activation, and cardiac diseases related to metabolic dysfunction. In this review, we summarize the current literature on REDOX and its role in the regulation of cardiac metabolism and inflammation, focusing on ROS, local REDOX signalling pathways, and other mechanisms.

Funder

Major Research Program of the National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3