Gas Pressure Effect on Sand Collapse in Kinetic Zone of Lost-Foam Casting

Author:

Jeon Joo Mae1,Lee Soo Jo2,Choe Kyeong Hwan3,Huh Jeung-Soo1ORCID

Affiliation:

1. School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. Research Center, Korea Evaporative Pattern Casting Company Limited, Kyungsangbuk-do 38909, Republic of Korea

3. Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea

Abstract

Pressure of the kinetic zone is an essential factor for making defect-free castings in lost-foam casting process. The extremely high pressure causes many problems, such as reducing the melt velocity and inclusion of residual decomposition of the pattern in the castings, and very low pressure causes sand collapse. Therefore, the minimum gas pressure for preventing sand collapse is required. When the minimum gas pressure can be predicted, computer simulation becomes possible. Successful computer simulations can help reduce the number of trials and the lead time while designing new casting products. A preliminary sand experiment was conducted to predict the gas pressure and reduce the number of actual casting experiments. In this preliminary sand experiment, compressed air was used instead of gas in the kinetic zone. A new mathematical equation was proposed from the results of the preliminary sand experiment. The void ratio of the sand effect on the minimum gas pressure was included in the equation. An actual casting experiment was conducted by melting nodular cast iron to verify this equation. In the actual casting experiment, pressure of the kinetic zone in front of the metal tip was directly measured. The results obtained from the preliminary sand experiment and the actual casting experiment validated the equation.

Funder

Korea Evaporative Pattern Casting Company

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IJMC/FEF Student Research Competition;International Journal of Metalcasting;2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3