Efficacy Analysis of Thickness and Camber Size of Cross Section of the Stator on Hydrodynamic Parameters in Linear Jet Propulsion System

Author:

Donyavizadeh Negin1ORCID,Ghadimi Parviz1ORCID

Affiliation:

1. Department of Marine Technology, Amirkabir University of Technology, Tehran, Iran

Abstract

The linear jet propulsion system, unlike pump-jets which are widely used in underwater bodies, is installed inside a tunnel under the vessel and can be used for high-speed crafts, tugs, and service boats. However, this system has not received adequate attention by researchers, which is the subject of the current study. In the present paper, hydrodynamic performance of the linear jet propulsion system is numerically investigated. Accordingly, the Ansys-CFX software is utilized and RANS equations are solved using the SST turbulent model. The results of the proposed numerical model, in the form of thrust and torque coefficient as well as efficiency, are compared with available experimental data for a ducted propeller, and good compliance is achieved. Considering the importance of stator cross section on the performance of the linear jet propulsion system, the influence of thickness and camber size of the stator on linear jet propulsion systems are examined. Based on the numerical findings, it is determined that at constant advance ratio, with increasing thickness of stator, the efficiency increases. It is also observed that as the span length increases, the maximum and minimum of the pressure coefficient increase for different thicknesses. Furthermore, it is seen that positive and negative pressure coefficients decrease with an increase in foil thickness.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of pre-swirl stator angles on broadband noise considering hydrodynamic performance of pump-jet propeller;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2024-09-14

2. Experimental study on thrust pulsation characteristics of water jet propulsion pump units;Ocean Engineering;2023-09

3. Numerical assessment of the effect of length, angle of attack, and type of ducts on hydrodynamic parameters of a linear-jet propulsion system;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-01-30

4. Wake flow characteristics and unsteady performance of a pump-jet propulsor under hull condition;Physics of Fluids;2022-12

5. A Review on Hydrodynamic Performance and Design of Pump-Jet: Advances, Challenges and Prospects;Journal of Marine Science and Engineering;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3