Affiliation:
1. Department of Marine Technology, Amirkabir University of Technology, Tehran, Iran
Abstract
The linear jet propulsion system, unlike pump-jets which are widely used in underwater bodies, is installed inside a tunnel under the vessel and can be used for high-speed crafts, tugs, and service boats. However, this system has not received adequate attention by researchers, which is the subject of the current study. In the present paper, hydrodynamic performance of the linear jet propulsion system is numerically investigated. Accordingly, the Ansys-CFX software is utilized and RANS equations are solved using the SST turbulent model. The results of the proposed numerical model, in the form of thrust and torque coefficient as well as efficiency, are compared with available experimental data for a ducted propeller, and good compliance is achieved. Considering the importance of stator cross section on the performance of the linear jet propulsion system, the influence of thickness and camber size of the stator on linear jet propulsion systems are examined. Based on the numerical findings, it is determined that at constant advance ratio, with increasing thickness of stator, the efficiency increases. It is also observed that as the span length increases, the maximum and minimum of the pressure coefficient increase for different thicknesses. Furthermore, it is seen that positive and negative pressure coefficients decrease with an increase in foil thickness.
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献