Optimization and Practice for Partition Pressure Relief of Deep Mining Roadway Using Empty-Hole and Deep-Hole Blasting to Weaken Coal

Author:

Chen Baobao1ORCID,Liu Changyou2ORCID,Wu Fengfeng2ORCID

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Rockbursts are among the most harmful dynamic disasters, threatening the personnel safety and mine operation. In order to alleviate stress concentration of roadsides and prevent rockbursts, the large-diameter boreholes and deep-hole blasting are employed for partition pressure relief in the deep mining roadway. Combined with failure behavior and stress distribution of the coal, the multilevel division of risk degree for roadsides stress is determined. Based on the orthogonal test of borehole pressure relief in the general danger partition, the response degree of quantitative indexes to main factors influencing the pressure relief effect is considered. The optimal drilling parameters of 120.0 mm diameter, 20.0 m depth, 1.0 m hole spacing, and 5° elevation angle are obtained, determining the stress boundary of safe pressure relief with boreholes. At higher dangerous stress divisions, the optimized blasting parameters through numerical simulation could be obtained as follows: 15.0 m depth, 1.3 decoupling coefficient, and 2.0 m hole spacing, and meanwhile, a stress relief partition of crisscross cracks with 0.61 m height is formed. The roadsides stress could be well controlled within the safe level. Then, an optimal combination of pressure relief is applied to different stress partition of roadsides, and the effectiveness is validated by field test, which proves remarkably applicable for engineering.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3