An Unconditionally Stable Numerical Method for Space Tempered Fractional Convection-Diffusion Models

Author:

Qiu Zeshan1ORCID

Affiliation:

1. Department of Basic Education, Xinjiang University of Political Science and Law, Tumushuke 844000, China

Abstract

A second-order numerical method for two-sided tempered fractional convection-diffusion equations is studied in this paper, both convection term and diffusion term are approximated by the tempered weighted and shifted Grünwald difference operators, the first time partial derivative is discretized by the Crank–Nicolson method, and then a class of second-order numerical schemes is derived. By means of matrix method, numerical schemes are proved to be unconditionally stable and convergent with order Oτ2+h2. The validity of the proposed numerical scheme is verified by numerical experiments.

Funder

Xinjiang University of Political Science and Law

Publisher

Hindawi Limited

Reference37 articles.

1. Tempered stable Levy motion and transient super-diffusion;B. Baeumer;Journal of Computational and Applied Mathematics,2010

2. High order schemes for the tempered fractional diffusion equations

3. Tempered fractional calculus

4. Numerical methods and analysis for a class of fractional advection–dispersion models

5. High-order numerical methods for the Riesz space fractional advection–dispersion equations;L. B. Feng;Computers and Mathematics with Applications,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3