Affiliation:
1. Department of Electrical Engineering, Swami Keshvanand Institute of Technology, Jaipur, India
2. Department of Mathematics, Swami Keshvanand Institute of Technology, Jaipur, India
Abstract
With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air.
Funder
Swami Keshvanand Institute of Technology, Management & Gramothan
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献