Preparation of TiO2/Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation

Author:

Xing Baolin12,Shi Changliang1,Zhang Chuanxiang1,Yi Guiyun12,Chen Lunjian1,Guo Hui1,Huang Guangxu1,Cao Jianliang1

Affiliation:

1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. Department of Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

Photocatalysts comprising nanosized TiO2particles on activated carbon (AC) were prepared by a sol-gel method. The TiO2/AC composites were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption, scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray (EDX). Their photocatalytic activities were studied through the degradation of Rhodamine B (RhB) in photocatalytic reactor at room temperature under ultraviolet (UV) light irradiation and the effect of loading cycles of TiO2on the structural properties and photocatalytic activity of TiO2/AC composites was also investigated. The results indicate that the anatase TiO2particles with a crystal size of 10–20 nm can be deposited homogeneously on the AC surface under calcination at 500°C. The loading cycle plays an important role in controlling the loading amount of TiO2and morphological structure and photocatalytic activity of TiO2/AC composites. The porosity parameters of these composite photocatalysts such as specific surface area and total pore volume decrease whereas the loading amount of TiO2increases. The TiO2/AC composite synthesized at 2 loading cycles exhibits a high photocatalytic activity in terms of the loading amount of TiO2and as high as 93.2% removal rate for RhB from the 400 mL solution at initial concentration of 2 × 10−5 mol/L under UV light irradiation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3