Assessing the Feasibility of Cogeneration Retrofit for Heating and Electricity Demands in Marine Diesel Engines

Author:

Liu Xianglong12ORCID,Yang Hao2,Feng Zhao2,Hu Guang2,Zeng Zhi2

Affiliation:

1. Hunan Engineering Research Center of Energy Saving and Material Technology of Green and Low Carbon Building, Hunan Institute of Engineering, Xiangtan 411104, China

2. Department of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

Abstract

In the marine engineering industry, turbocharged diesel engines are often used to generate electricity, and hot oil can be extracted after generating electricity. However, marine diesel engine heat recovery can be distinguished from gas heat recovery for turbocharged and nonturbocharged diesel engine systems. The ideal air model Brayton cycle is used to evaluate the feasibility of turbocharged/nonturbocharged cogeneration retrofits in turbocharged diesel engine systems, and the paper is designed to evaluate the effect of pressure and temperature and cooling ratio of exergy efficiency. The results show that the performance of turbocharged and nonturbocharged work increases with increasing pressure ratio until it reaches a maximum value and decreases with increasing pressure ratio at a constant temperature. If an electric generator is selected first, the heat recovery after the turbocharger can be used to improve the contract for heating and electricity needs. While the exergy efficiency is selected priorly, cogeneration retrofit for heating and electricity demands can be used for heat recovery without the turbocharger system.

Funder

Hunan Institute of Engineering

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3