Mobile Interface CMS Method for Vibration Characteristics Prediction of Mistuned Bladed Disk with Different Coupling Degrees

Author:

Zhang Liang1ORCID,Wang Qidi1,Li Xin1

Affiliation:

1. Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

Abstract

The prediction of vibration characteristics was studied in the mistuned bladed disk by the mobile interface prestressed component mode synthesis (CMS) superelement method. When the strongly, generally, and weakly coupling in the mistuned bladed disk, according to the results of the direct FEM method, the prediction accuracy of this method was verified and compared with the fixed-interface CMS method by using the relative error of dynamic frequency, vibration mode matching function, and dimensionless root mean square error of vibration amplitudes. It is pointed that for mistuned bladed disk in the strong coupling, the prediction accuracy of dynamic frequency and vibration amplitudes are higher by the mobile interface CMS method and the vibration modes are matched with the direct method. In weak coupling, the results of dynamic frequency and vibration modes predicted by the mobile interface CMS method and the fixed-interface CMS method are consistent with the direct method, but the vibration amplitudes’ prediction error of the mobile interface CMS method is lower than that of the fixed-interface CMS method. In general coupling, the mobile interface CMS method has higher dynamic frequency prediction accuracy at low order, and the two methods have comparable dynamic frequency prediction accuracy at high order. The vibration modes predicted by the two methods are matched with the direct FEM method, and the prediction accuracy of vibration amplitude by the mobile interface CMS method is better than that of the fixed-interface CMS method. The results indicate that the mobile interface CMS method could more accurately predict vibration characteristics of the mistuned bladed disk with different coupling degrees and could be an effective measurement for studying the vibration characteristics of the mistuned bladed disk system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference26 articles.

1. Coupled vibrations of gas turbine shrouded blades;C. Y. Zhou;Journal of Harbin Institute of Technology,2001

2. Optimization of mistuning blades an aero-engine based on arrangement for vibration absorption in artificial ant colony algorithm;H. Q. Yuan;Journal of Vibration and Shock,2012

3. Localization characteristics of vibratory mode for bladed disk assemblies;J. J. Wang;Journal of Aerospace Power,2009

4. Vibration analysis of mistuned bladed disc of steam turbine;F. Qin;Journal of Beijing University of Technology,2007

5. Mistuned bladed disk forced vibration analysis based on standing wave formulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3