Route Guidance Model with Limited Overlap on Freeway Network under Traffic Incidents

Author:

Zhang Xuan1ORCID,Tang Jinjun1ORCID,Wang Chengcheng2ORCID,Wang Chao2ORCID

Affiliation:

1. School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China

2. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd, Jinan 250000, China

Abstract

With the increasing density of the freeway network, frequent traffic incidents on road segments have a significant impact on the operational efficiency of the road network. Therefore, it has become urgent and important to study traffic route guidance strategy on the road network level. The previous traffic route guidance method primarily focused on the congestion on the road segments where incidents occurred, with insufficient attention given to the impact of congestion on the road network level. In this study, a route guidance model with limited overlap is proposed to improve freeway network reliability under traffic incidents. Specifically, in order to explore alternative paths, we conducted a study on the problem of finding k-short paths with limited overlap. The objective is to identify a set of k-paths that are both sufficiently dissimilar and as short as possible. Then, we promptly update the route guidance information using a stochastic dynamic traffic assignment model that aligns with travelers’ path choice psychology. Moreover, we use the reliability of the road network to evaluate the network performance. To illustrate the model, the Jinan freeway network is selected as an experimental study. The effectiveness of this method was validated through SUMO simulations, comparing it with alternative route guidance methods, including Yen’s algorithm, A algorithm, and ant colony algorithm. These results show that the proposed method has proven effective in mitigating traffic congestion arising from incidents and performs well in regard to the reliability of the road network under the impact of incidents.

Funder

Key Research and Development Program of Hunan Province of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3