Light Gradient Boosting Machine-Based Link Quality Prediction for Wireless Sensor Networks

Author:

Liu Linlan1ORCID,Niu Mingxiao1ORCID,Zhang Chao1ORCID,Shu Jian2ORCID

Affiliation:

1. School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China

2. School of Software, Nanchang Hangkong University, Nanchang 330063, China

Abstract

Link quality prediction is a fundamental component of the wireless network protocols and is essential for routing protocols in wireless sensor networks (WSNs). Effective link quality prediction can select high-quality links for communication and improve the reliability of data transmission. In order to improve the accuracy of the link quality prediction model and reduce the model complexity, the link quality prediction model based on the light gradient boosting machine (LightGBM-LQP) is proposed in this paper. Specifically, agglomerative hierarchical clustering and manual division are combined to grade the link quality and obtain the labels of samples. Then, light gradient boosting machine (LightGBM) classification algorithm and Focal Loss are used to estimate the link quality grades. In order to reduce the impact of data imbalance, Borderline-SMOTE is employed to oversample the minority link quality samples. Finally, LightGBM-LQP predicts link quality grade at the next moment with historical link quality information. The experimental results on data collected from a real-world WSNs show that the proposed model has better prediction accuracy and shorter predicting time compared to related models.

Funder

Innovation Foundation for Postgraduate Student of Jiangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3