Field Study on the Law of Surface Subsidence in the High-Intensity Fully Mechanized Caving Mining Working Face with Shallow Thick Bedrock and Thin Epipedon in Hilly Areas

Author:

Tan Yi1234ORCID,Cheng Hao12,Gong Shuang12ORCID,Bai Erhu123,Shao Minchao5,Hao Bingyuan6,Li Xiaoshuang7ORCID,Xu Han12

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Province, Jiaozuo 454000, China

3. Xi’an University of Science and Technology, State Key Laboratory of Coal Resources in Western China, Xi’an University of Science and Technology, Xi’an 710054, China

4. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China

5. Shanxi Yamei Daning Energy Co.,Ltd, Shanxi Province, Jincheng 048000, China

6. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030000, China

7. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China

Abstract

Shallow and thick coal seams occur extensively in hilly areas in Shanxi Province and Shaanxi Province, China. The surface damage and landslides caused by shallow fully mechanized caving mining have a very serious impact on the environment. To provide a theoretical and reference foundation for mine environmental protection in hilly settings, a research on surface movement of the high-intensity fully mechanized caving mining working face with shallow thick bedrock and thin epipedon (HIFMCMWFSTBTE) is urgently needed. In this study, using the P2 working face of a mine as the research object, three surface subsidence observation lines were arranged in this working face to analyze the dynamic change characteristics of surface subsidence. Besides, the law of surface movement, mining sufficiency, fracture development and distribution characteristics, subsidence speed, and surface movement duration of HIFMCMWFSTBTE in hilly areas were comparatively studied. The research results reveal that the upper part of the slope slides towards the downhill direction under the action of tensile stress or push stress. As a result, the range of the horizontal movement towards the downhill direction of the slope and the range of surface movement both increase, and the movement angle and boundary angle both decrease compared with the plain. HIFMCMWFSTBTE is prone to serious sudden discontinuous damage. Fractures on the gully region surface develop along the contour, forming a crisscross fracture network, and the fractures are not easy to close after being generated. HIFMCMWFSTBTE in hilly areas can achieve full mining more easily than those of other geological conditions. According to the field measurement, critical full mining can be achieved in P2 working face when the ratio of mining width to mining depth is 1.07. The surface movement duration of HIFMCMWFSTBTE in hilly areas is relatively short. Considerable subsidence will occur in the active stage, and the surface subsidence is sudden and violent. The measured surface stabilization time of the P2 working face is only 20% of the calculated value in the Specification for Coal Pillar Reservation and Coal Mining under Buildings, Water Bodies, Railways, and Main Shafts (hereinafter referred to as the Specification), indicating that the specification's empirical formula is inapplicable to the calculation of surface stabilization time of the P2 working face.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3